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Abstract—We have implemented an updated Hierarchical 
Triangular Mesh (HTM) as the basis for a unified data model 
and an indexing scheme for geoscience data to address the 
variety challenge of Big Earth Data. We observe that, in the 
absence of variety, the volume challenge of Big Data is 
relatively easily addressable with parallel processing. The more 
important challenge in achieving optimal value with a Big Data 
solution for Earth Science (ES) data analysis, however, is being 
able to achieve good scalability with variety. With HTM 
unifying at least the three popular data models, i.e. Grid, 
Swath, and Point, used by current ES data products, data 
preparation time for integrative analysis of diverse datasets 
can be drastically reduced and better variety scaling can be 
achieved. In addition, since HTM is also an indexing scheme, 
when it is used to index all ES datasets, data placement 
alignment (or co-location) on the shared nothing architecture, 
which most Big Data systems are based on, is guaranteed and 
better performance is ensured. Moreover, our updated HTM 
encoding turns most geospatial set operations into integer 
interval operations, gaining further performance advantages. 
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architecture; Big Data; variety; Earth Science; DAAC; remote 
sensing; data analysis; data fusion; load balancing; co-
registration; quadtree; indexing; geographic metadata; GIS 

I. INTRODUCTION 
For a few decades now, the prevailing data practice in Earth 
Science (ES) has followed a two-step approach: 1) 
packaging data into files for archival and distribution and 2) 
cataloging the metadata of the datasets and data files into 
databases managed by relational database management 
systems (RDBMSs), thus making data holdings discoverable 
and searchable. The establishment of distributed active 
archive centers (DAACs) as data warehouses and the 
standardization of data file format through the HDF/netCDF 
[1] Application Programming Interface (API) by NASA 
Earth Observing System Data Information System (EOSDIS) 
since the 1990s exemplify the apex of this approach. These 
DAACs have since enjoyed much popularity. Consequently, 

this approach has become the de facto standard paradigm and 
has been adopted by other organizations. 

Although this two-step approach has elevated the 
convenience of finding, obtaining, and using data to 
unprecedented heights, it has obviously reached its limit 
when faced with today’s demands. Its limitation is a 
consequence of the fact that users cannot access and 
manipulate the data directly but have to work with and 
through their containers (i.e., files) requiring specialized 
expertise and resources beyond scientific analysis. This 
approach has historically led inevitably to data download 
(mostly through low-bandwidth Internet connections) and 
integration for analysis by users. With few exceptions, it is 
still largely practiced today with the same consequences. 

Since, as a norm, users cannot access and analyze the 
data “in place”, they must follow the FTP links that result 
from the metadata search and proceed to download the data 
files before analysis may commence. In preparation for the 
download and subsequent analysis, however, users (or their 
institutions) must first procure necessary compute and 
storage resources and then address the associated cost of 
management and maintenance. Moreover, researchers now 
must also engage in data management activities, such as 
organizing and backing up downloaded data. Then, they 
have to familiarize themselves with the organization and 
meanings of the data elements in the files. These activities, 
irrelevant to research pursuits, unnecessarily encumber 
researchers and distract them from their investigations, 
hampering productivity. The most disheartening aspect of 
this practice is perhaps the collective waste it causes because 
almost every data analysis research endeavor needs to 
duplicate the process and the resources it requires. 

Once the downloaded data become “local” to individual 
research users or institutions, their processing is subjected to 
the preferences of these individuals (e.g., data management 
policies or the choices of programming languages for data 
analysis). The profusion of these preferences, in turn, erects 
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nearly insurmountable barriers against effective cross-
institution and/or cross-disciplinary collaborations. In 
addition, since most geoscience researchers are not 
professional software engineers and rarely follow good 
software engineering practices, such as performing unit (and 
other) tests and subjecting source code to version control, 
software quality becomes suspect and research 
reproducibility becomes illusive. 

A. Volume vs. Variety 
Since supercomputing centers have achieved remarkable 

success in maximizing value for computer simulations, it is 
natural that the first attempts to address the data analysis 
challenges described above are to leverage the existing 
supercomputing infrastructure and architectures. This 
category of solutions is characterized mostly by moving the 
data files to the dedicated, but expensive, file systems of the 
supercomputing facilities, where computing resources are 
readily available close to the data.  

Although good scaling in volume can be achieved with 
this approach, it is a very different story with variety. The 
diverse variety of ES data arises mainly from the multiplicity 
of observations. “In situ” and “remotely sensed” are the two 
main categories of observational data. Remote sensing data 
can again be categorized into ground-based (e.g., weather 
radars), airborne, and space-based depending on the 
instruments’ locations/positions relative to Earth’s surface. 
The instruments used in remote sensing can also be divided 
into passive sensors (e.g., radiometer and imager) and active 
sensors (e.g., radar and lidar) according to their operation 
modes. These instruments—in accordance with their 
positions, purposes, requirements, and physical or practical 
constraints—often utilize different sensing geometries and 
observe with different resolutions, both spatially and 
temporally. Further processing of these data generates even 
greater varieties. 

B. Variety’s Toll on Iterative Analysis 
When an integrative analysis requiring diverse datasets 

needs to be performed, the data preparation effort is not 
substantially reduced even with the aforementioned 
supercomputing solution with its nearby compute resource, 
because each file in each variety has to be processed and 
homogenized first before the integrative analysis can 
continue. Unless the “fused” data of the integrative analysis 
is saved, anyone who wishes to perform the same analysis 
will have to repeat the entire, same data preparation process. 
If a similar, but not exactly the same, integrative analysis 
needs to be performed, e.g. using different spatiotemporal 
subsets or with slightly different data products, data 
preparation almost always has to be redone; results and 
intermediate products from previous efforts can scarcely be 
reused. Since scientific analysis is characterized by 
continuous reanalysis, the costs of data preparation exert an 
expensive toll at every iteration. 

C. In-place analysis via Partition Placement Co-alignment 
Big Data technologies help enable in-place analysis, 
including the creation and sharing of data products, yet ES 
data places special demands on computing architectures. In 
geoscience data analysis, spatiotemporal coincidence is a 
fundamental requirement. For example, when analyzing 
cloud formation, we need other spatiotemporally coincident 
information, such as temperature, pressure, humidity, 
airflow, etc. Yet when distributed arrays of ES data with 
misaligned partitions need to be analyzed together, the 
analysis has to perform computationally expensive 
repartitionings on the fly to move and align the data first [2], 
degrading overall performance. When the placements of ES 
data partitions are co-located on a shared-nothing 
architecture (SNA), better overall performance can be 
achieved. Currently this movement occurs when an end-user 
integrates data on their own, incurring problems mentioned 
previously.  Partition Placement Co-alignment (PPC) is 
required to realize in-place analysis on distributed 
architectures, especially when data transfer and integration 
is costly, further motivating SNA. 

D. A Unifying Approach 
We are developing an in-place analysis system for ES data 
analysis and sharing. We are building on SciDB, an analysis 
environment that scales to the massive, distributed, parallel 
systems that are required to integrate and analyze diverse, 
voluminous ES datasets [3,4]. SciDB is based on the SNA 
which is exceptionally suited for pleasingly (aka 
embarrassingly) parallel computations (i.e., distributed 
parallel computations mostly exempt from inter-process 
communication). Inter-process communication is 
synonymous here to data movement, albeit movement within 
the SNA cluster. The most ideal PPC strategy is thus one that 
renders the greatest majority of analyses pleasingly parallel. 
As mentioned above, SciDB also supports tightly-coupled 
scientific calculations that are not pleasingly parallel. 

Because they are fundamental to ES integration and 
analysis, we are adding geometric functions to the SciDB 
array database and scientific calculation platform [5]. We 
build on the work of Szalay et al. who developed the 
Hierarchical Triangular Mesh (HTM) and applied it to index 
the Sloan Digital Sky Survey (SDSS) [6,7]. HTM’s efficient 
indexing and fast integer representation provides a common 
geographical reference for comparing and combining 
different data sets. HTM's quad-tree-based indexing scheme 

Figure 1. Three data models. 



recursively subdivides triangles into four children by 
bisecting the parent's edges, starting with a parent spherical 
octahedron. This indexing scheme leads to an efficient 
mapping of the sphere to integer intervals, which we then use 
for indexing, search, intersection, conditional subsetting, co-
registration, regridding, among other tasks, including 
critically, PPC for load balancing and minimizing data 
transfers.  
 In this work we describe a new “Left Justified” bit 
format that is more appropriate to indexing and integrating 
distributed ES data. We discuss how our new hierarchical 
labeling is used for the efficient distribution of data across 
computational nodes. Temporal indexing and other forms of 
variety are important but relatively simpler due to its one-
dimensional nature and beyond the scope of this paper. 

II. DEALING WITH DIVERSITY: POINT, SWATH, & GRID 
The spatial aspect of geoscience data variety can generally 
be represented by three data models with array as the data 
structure: Grid, Swath, and Point (Fig. 1). Grid is a mesh 
with fixed latitude and longitude spacing and thus a simple 

linear relation exists between array indices and latitude-
longitude geolocation coordinates. Swath retains the 
spaceborne instrument’s observation geometry (e.g., cross- × 
along-track), where no simple relation exists between array 
indices and geolocations. Rather, geolocation is specified 
individually for each Swath array element, i.e. Instantaneous 
Filed of View (IFOV). The Point model is used mostly for in 
situ observations made at irregularly distributed locations, 
which are encased in a vector (1D array). Similar to Swath, 
geolocation for each point is also specified individually. The 
dissimilarities among these data models give rise to 
difficulties in integrative analysis. For example, simply 
determining the (approximate) common area covered by two 
Swath arrays can become algorithmically involved, 
especially if the swaths are from satellites with different orbit 
characteristics. 

These data models, however, have one commonality: data 
values associated with geolocations, which can thus serve as 
a basis for a unified data model. Indeed, at the heart of our 
unified data model is an indexing scheme that essentially 
assigns an “address” (index) to every surface element (up to 
a desired resolution) of Earth (i.e., geolocation), e.g. Fig. 2. 
When data are stored in arrays indexed by this address, it 
allows quick retrieval of data values associated with any 
given geolocation, regardless of their original data models. A 
good index like HTM speeds the comparison and integration 
of data with different geometries (Fig. 3). 

III. HIERARCHICAL SPHERICAL TRIANGULAR MESH 
Details about HTM indexing have been described elsewhere 
[5-13]. The HTM is based on the recursive quadfurcation of 
a root spherical octahedron, which is divided into South and 
North halves labeled with a 0 and 1, respectively, Fig. 2. The 
4 triangles of each half are labeled 0-3 starting from the 
triangle nearest the x-axis proceeding counterclockwise 
around the sphere as viewed from outside and above the 
poles. At each following level of recursion, the 4 child 
triangles constructed by adding a triangle connecting the 
midpoints of an existing triangle's edges are labeled 0-3 
according to order in which the parent's vertices are stored. 
 

 
Figure 3. Finding spatial intersections using the HTM. 

 
 

 
Figure 2. HTM: Projecting the octagon onto and 
recursively partitioning the sphere into a quad-tree, 
whose branches are labeled in binary. 

 



 
The symbolic form of the HTM appends the label for 

each level, with each digit describing how to traverse the 
quad-tree structure from the root octahedron to the leaf 
triangle. For example, the 2nd child (a grandchild) of the 1st 
child of the first (0th) triangle counterclockwise from the x-
axis in the northern hemisphere would be denoted N012, a 
level 2 triangle; examples of the symbolic labeling of 
triangles is illustrated in Fig. 4.   

 

 
Figure 4. The spherical triangles N0 (red), N01 (green), N012 
(purple), N0123 (cyan). 

 

A. Mapping HTM indices to integers 
As pointed out by Gray, a triangle with an index contains all 
of the points inside it, completely covering that triangle [8]. 
One can map HTM symbolic names, and hence the indexed 
triangular regions, to integers in a number of ways. As can 
be seen with the symbolic form described above, triangles 
that share the same "prefix" are children of the triangle 
denoted by that prefix. For example (Fig. 4), with their 
shared prefix in boldface, the triangles 
 
N0123123 and 
N0123333 
 
are both contained in the triangle 
 
N0123. 
 
Note that the triangles contained within a parent are readily 
labeled using the parent's representation as a prefix. For 
example all of the level 6 children of the level 3 triangle 
N0123 are in the range 
 
N0123000 - N0123333 
 

without any gaps in the coverage. Regions on the sphere may 
be approximated or covered by sets of these HTM indexed 
triangles. When encoded as integers, contiguous sequences 
of HTM indices corresponding to a geographical region can 
be replaced by integer intervals, such as in the previous 
example. Searching and geometric calculations such as 
calculating intersections between datasets are made more 
efficient by substituting integer operations for the floating-
point spherical trigonometry or 3D vector geometry 
calculations. This dramatic reduction in computational effort 
and storage enables the provision of detailed geometric 
information as HTM geometric metadata, accelerating the 
process of integrating different datasets. This is a crucial 
reason why we are adding HTM support to SciDB. 

B. Right Justified HTM integer index 
The SDSS/HTM implementation used a straightforward 

mapping from the symbolic representation mentioned above 
to integers. In their representation, zero, 0x0 in hexadecimal, 
is the invalid HTM index. For valid indices, a top or depth 
bit was set and succeeding bits were set according to the 
symbolic representation with S and N being represented by 0 
and 1 respectively. With the prefix 0b indicating a binary 
representation, we have the following example mappings of 
the HTM symbols to integers. We call this a Right Justified 
Mapping (RJM) or format. 
 
S0123  -> 0b1000011011   = 0x21b = 539 
N0123  -> 0b1100011011   = 0x31b = 795 
S01230 -> 0b100001101100 = 0x86c = 2156 
 

 
Figure 5. Triangles sharing a prefix are contained in the parent 
with that prefix. Here N0123 (green) has children N0123123 
(orange), and N0123333 (blue). 

 



Unfortunately, RJM maps points in geometric proximity 
(e.g. in the offspring triangles of the same parent) to 
multiple, separated locations on the number line. Note that 
geometrically S0123 (corresponding to the digital value 539 
RJM) contains S01230 (2156 RJM), but that when mapped 
to integers N0123 (795 RJM) it lies in between, even though 
S0123 and S01230 share the same prefix to the 3rd level 
(Figs. 5). Thus the correspondence between HTM regions 
and RJM integer intervals holds only within the same HTM 
index levels. Implementing geometric set operations, e.g. 
intersection, under RJM is complicated by this one-to-many 
mapping of the geometric points (in triangles) along the 
number line. HTM indices in RJM at a given level form a 
contiguous sequence of integers, but our diverse datasets 
feature a wide range of spatial resolutions. 

For example, a data set with 5-km footprints might be 
well suited with level 11 HTM triangles, while a 150-km 
footprint might get by with level 6. In most cases we are 
more interested in groups of measurements, e.g. a swath of 
data as opposed to individual measurements at the IFOV 
level, for co-location and regridding over a geographic 
region.  Therefore we desire to use triangles from multiple 
levels of HTM to more succinctly approximate and index 
these regions. As with other adaptive gridding schemes, large 
triangles in the interior of such regions are supplemented 
with smaller triangles in the vicinity of the region's 
boundary, leading to compact descriptions, all mapped to 
integer intervals (Fig. 6). 

 

 
Figure 6. Approximating a region with triangles at multiple 
resolution levels. 

C. Left Justified Integer Intervals 
So far we have discussed integer intervals as an 
optimization scheme for sets of HTM indices. We have 
noted that some geometric set operations have analogous 
integer operations, though complicated by the RJM 
encoding. If indexing were our only goal, we could live with 
RJM. But because we require a better correspondence 
between HTM integers and geometry to support data 
locality for distributed scientific analyses as well as for 

efficient geometric metadata set operations, we thus must 
revisit the HTM encoding. 

A more convenient mapping to the integers indices that 
allows other tools to take advantage of the HTM's geometry 
using integer operations without necessarily falling back on 
HTM's floating-point geometry, is to use a Left Justified 
Mapping (LJM) bit format, instead of the RJM. In this 
representation the above example becomes 
 
S0123  -> 0b100001101100  = 0x86c = 2156 
N0123  -> 0b110001101100  = 0xc6c = 3180 
S01230 -> 0b100001101100  = 0x86c = 2156 
 
using 12-bit words for clarity. 

Now we see that the common HTM prefix is rendered 
into the integers in the same way for different HTM levels, 
so now geometric containment is respected by the mapping. 
Unfortunately, as demonstrated in the above example, we 
now have an aliasing problem, e.g. with S0123 and S01230, 
in that the LJM has difficulty distinguishing between levels. 
In other words, just how many bits from the left are 
significant? For the RJM, the top or depth bit tells you both 
the level of the HTM index and where the significant bits 
start. To complete the LJM approach we need to do three 
more things. 

First, we need to keep track of the level.  In a 
programming environment like C++ we can merely keep 
track of the level in another field in a struct or an object. But 
since we are mapping to integer intervals so other tools may 
readily take advantage of the implicit geometric encoding, 
we must improve the mapping. For this discussion we 
confine ourselves to 64 bit integers, moreover to signed 64 
bit integers for technical reasons which may be relaxed if 
needed. To track the quadfurcation level we devote the 
rightmost (least significant) 6 bits, using the rightmost 5 for 
the actual level number and the remaining bit (the 6th) in 
reserve.  We also reserve the leftmost bit for internal use and 
set the remaining bits as in the left justified example above--
except we drop the top/depth bit as being unnecessary. 

 
Table 1. Left Justified Mapping 

Bit position Use 
most significant 

63 
Reserved // Top Bit 

62 North-South Bit 
60..61 Octahedral triangle index 

Resolution level 0  
~10 km 

6..59 Quadtree triangle index 
Resolution levels 1-27 
~5 km to ~7 cm 

5 Reserved // Terminator Bit 
0..4 

least significant 
Resolution level // Terminator 

 



Thus the triangles from our previous example become: 
 
S0123  -> 0x06c0000000000003 
S01230 -> 0x06c0000000000004 
N0123  -> 0x46c0000000000003 
 
This almost gets us where we need to go. We can tell the 
difference between S0123 and S01230 and integer 
comparisons can tell us that the latter is contained in the 
former, but cannot distinguish the reverse. Therefore the 
inclusion of levels in the integers respects the underlying 
geometric meaning of the HTM triangles. 

Note that the difference between these integer 
representations of S0123 and S01230 is merely the 
difference in their resolution levels. Since the maximum 
resolution level is 27 for our 64 bit integer encoding (see 
Table 1 above), for any two HTM integers that differ by 27 
or less, the triangle associated with the lesser will contain the 
triangle associated with the greater. In fact, traversing 
through the levels for these otherwise identical integers 
corresponds to traversing a quad-tree by always choosing the 
0th triangular partition at a particular resolution/quadfurcation 
level. Next we deal with the integers that are greater than this 
special sequence but less than the next indexed triangle at the 
same quadfurcation level. 

The second step is to understand how triangles of 
different levels are interleaved in LJM and the role that 
integer intervals play. There are natural upper and lower 
bounds to the set of all labeled child triangles within a given 
triangle. For the lower bound one merely takes the HTM 
index of that given triangle as a prefix and then appends 
zeros down to the maximum allowed resolution of the 
representation (excluding the 6 bits reserved for the 
quadfurcation level), i.e. one needn't change the current 
representation. Consider the following consecutive level 3 
triangles indexed and mapped as follows. 
 
lower bound S0123 0x06c0000000000003 
upper bound S0130 0x0700000000000003(faulty) 
 
Ignoring the 6 bits reserved for the quadfurcation level, the 
numbers between these two limits correspond to all of the 
triangles in S0123, i.e. traversals of the HTM quadtree from 
that triangle, representable in our 64 bit LJM. Using S0130 
as an upper bound for triangles in S0123 is problematic, 
because of the aliasing problem. For performance 
considerations it is very desirable that integer order 
operations, e.g. “<” or “<=”, could be made to stand in for 
geometric intersection. However, special care must be taken 
for the faulty upper boundary LJM representation above, 
because one has valid HTM integers less than the upper 
bound S0130 above, but still not in S0123, e.g. S013 at level 
2. This complicates the code surrounding inclusion at the 
upper bound, and we can do better. 
 
 

 
Figure 7. The level 3 interval S0123..N0123 with multiple 
triangles. Otherwise filled, the interval has a geometric hole, 
the larger level 2 triangle N013 near the pole. 

 
The third thing to do is thus to address the upper bound: 

if we used the encoding scheme discussed above, drawing a 
correspondence between integer interval operations and 
geometric set operations becomes troublesome. Some of 
these problems are lessened if we use the last, smallest 
indexed triangle as the upper bound, which are as follows. 
 
upper bound S0123  -> 0x06c3ffffffffffc3 
upper bound S01230 -> 0x06c3ffffffffffc4 
 
Where we have essentially selected the 3rd triangle at each 
quadfurcation (adding ones at each bit position down to the 
rightmost 6 bits). However, this representation again 
confuses the logic associated with determining inclusion at 
the upper bound. One could mask off the level bits or make 
use of the unused 6th bit, but it is easier to introduce a 
terminator for the interval by simply setting all bits to the 
right of the significant HTM location bits to one. For a 6-bit 
field, this corresponds to the number 63, 0x3F. Level 
information is already contained in the lower bound for an 
interval and is thus redundant in the upper bound. Therefore, 
with intervals, the above examples become: 
 
S0123  0x06c0000000000003-0x06c3ffffffffffff 
S01230 0x06c0000000000004-0x06c3ffffffffffff 
N0123  0x46c0000000000003-0x46c3ffffffffffff 
 
With this mapping the integer interval mappings of all of the 
triangles in S01230 fall within the interval 
0x06c0000000000004-0x06c3ffffffffffff, and 
intersections can be performed with integer operations. 

If we were only dealing with individual triangles, we 
needn't explicitly save the terminator along with the lower 
bound, but the terminator is important when the interval is 
for more than one triangle at a given level.  

 
 



An example of an interval including multiple triangles at 
the same level is 
 
S0123-N0123 

0x06c0000000000003-0x46c3ffffffffffff 
 
corresponding to a complex region on the sphere (Fig. 7). 
Note that all of these triangles in the interval are at the same 
quadfurcation level. When triangles at different levels are 
combined in one set of intervals, one must fix how one 
handles areas of overlap. For our searching and co-
registration needs, subsuming higher resolution triangles into 
overlapping lower resolution intervals is appropriate, though 
it adds the complexity of having to edit the higher resolution 
intervals when intersections occur when adding intervals. For 
example, in Figs. 4 and 5 the smaller triangles would be 
subsumed in their parents. 

 

  
Figure 8. Simple automatic chunking based on HTM integer 
intervals for different spatial distributions of data/work. Left: 
homogeneous. Right: non-uniform. Different colors correspond 
to different partitions and their placement. 

The mapping from HTM to integer intervals described 
above tends to map nearby portions of the sphere to nearby 
portions of the number line.  Since the indexing is based on a 
quadratic tree, it is possible for neighboring leaf nodes 
(triangles) to have no parent nodes in common, save for the 
root. In this case, neighboring triangles (in a geometric 
sense) could correspond to integers that are rather far apart 
(in a numeric sense).  This occurs, for example, at the 
boundaries of the spherical triangles making up the root 
octahedron. So whereas intersections are respected by the 
mapping, finding geometric nearest-neighbors via integer 
intervals is not trivial and is much easier using the quad-tree 
traversal functions of HTM. 

IV. APPLYING THE HTM ON SCIDB 
The left justified interval mapping plays a critical role in 
adding geospatial capabilities to SciDB. SciDB is based on a 
distributed/parallel shared-nothing paradigm for its array 
database functions as well as its MPI-based analysis 
functions. Shared-nothing means that data is not redundantly 
shared across the SciDB compute nodes and is not 
communicated from node to node to the greatest extent 
possible. The LJM provides a natural way to partition the 
sphere and distribute data across computational nodes (Fig. 
8). Once one constructs HTM index interval metadata for the 

datasets of interest, we can then partition those intervals into 
a new set that balances the amount of data across the 
compute nodes. That is, each compute node is associated 
with its own set of HTM index intervals, and hence 
geometric region on the sphere. Consequently geometric 
operations such as intersections on the data are balanced 
across those nodes, communications are minimized because 
geometrically local operations are kept local on the compute 
nodes. This linkage of geometric and computational 
partitioning is essential for realizing the goals of efficiently 
using diverse, large scale Earth Science data in SciDB in 
place. 

We add our updated HTM to SciDB using its User 
Defined Type and Function (UDT and UDF) facilities and 
have constructed a preliminary HTM UDT verifying the 
basic functionality of the type and related functions. Our 
extension can construct the new left and the old right 
justified mappings as well as the symbolic names of HTM 
triangles for use as indexes in SciDB’s arrays. 

The SDSS/HTM we have extended has an efficient and 
fast skip list-based implementation of sets (called ranges in 
the code) of HTM integer intervals for handling complex 
geometric regions [14]. We are continually adding geometric 
set operations so that we may eventually handle a broad 
range of geographic regions.  As these are integrated with 
SciDB we will demonstrate and measure the performance of 
HTM-enabled geometric functions on full scale Earth 
Science data for our NASA-funded DERECHOS project, 
which uses multiple sources of data to automatically identify 
spatio-temporally extended weather events, starting with 
blizzards. 

At this point completing the integration of HTM with 
SciDB is straightforward.  More interesting are the 
capabilities that will be demonstrated when we start to tag 
Earth Science data with HTM ranges, sets (arrays in SciDB) 
of our left justified integer intervals. This will allow us to 
geometrically compare, co-register, and select diverse kinds 
of data via metadata operations. The HTM gridding, as a 
standardized intermediary, provides extra options for 
quantitatively combining data.  

Rather than depending on the assumptions made by 
stovepiped producers of high-level gridded data products, a 
researcher can work closer to the measurements and 
uncertainties, with lower level data, relying on the HTM 
indexing in the SciDB array database to help automate 
handling the data's diverse geometries. We are also working 
on a regridding capability in which the system uses the HTM 
to construct grids adapted to the intrinsic geometry of the 
data itself, whether gridded, unstructured, or swath, and then 
provides the means to transform the data from one grid to 
another. Researchers will be able to choose, according the 
needs of their analysis, whether to regrid data to the grid 
associated with a particular sensor or to a different grid not 
associated with any particular data source. As an aside, the 
triangles used in the HTM, being quasi-equiareal, do not 
suffer the extreme singularities and distortions of the popular 



lat-lon grids, yet we plan to take advantage of the Earth 
Science community's support of a variety of grid geometries 
(e.g. geodesic and CubeSphere grids) so that our HTM-based 
functions help automate the interoperability of existing grids 
and the data driven grids HTM enables. 

SciDB provides a compute and storage paradigm better 
suited to the large-scale distributed data intensive Earth 
Science than the traditional 2-step of download and integrate, 
even when supported by supercomputing centers. Its shared 
nothing architecture limits costly data transfers and opens up 
“in place” analysis and data sharing bypassing expensive 
data preparation and integration. The new HTM with its left 
justified bit format provides an efficient uniform geographic 
platform for integrating diverse datasets, enables efficient 
implementation of the shared nothing architecture via data 
partition placement co-alignment, and provides a compact 
representation for geographic metadata. Thus SciDB and the 
new HTM point the way towards a data analysis 
environment that scales to the current Big Earth Science 
Data analysis variety challenge.  

V. ACKNOWLEDGMENTS 
Support for this work is primarily provided by the NASA 
Earth Science Technology Office’s Advanced Information 
System Technology program and partially by the National 
Science Foundation’s EarthCube program. 

REFERENCES 
[1] The Network Common Data Form (NetCDF): 

http://www.unidata.ucar.edu/software/netcdf/; The HDF 
Group, Hierarchical Data Format: 
http://www.unidata.ucar.edu/software/netcdf/  

[2] Clune, T., K.-S. Kuo, K. Doan, and A. Oloso. 2015. "SciDB 
versus Spark: A preliminary comparison based on an Earth 
science use case," in AGU Fall Meeting, San Francisco, 
California, 2015. 

[3] SciDB by Paradigm4: www.paradigm4.com; J. Rogers et al. 
Overview of SciDB: Large scale array storage, processing and 
analysis. In SIGMOD, 2010. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[4] Brown, P. 2015. SciDB and Geoinformatics Analysis. 
Geophysical Research Abstracts, Vol. 17, EGU2015-15102, 
2015. EGU General Assembly 2015 

[5] The Hierarchical Spherical Triangular Mesh (HSTM) website: 
https://github.com/michaelleerilee/hstm 

[6] Szalay, A.S., Gray, J., Fekete, G., Kunszt, P.Z., Kukol, P., and 
Thakar, A. 2005.  Indexing the Sphere with the Hierarchical 
Triangular Mesh. Microsoft Research Technical Report, 
MSR-TR-2005-123. 

[7] The Sloan Digital Sky Survey and HTM websites: 
http://skyserver.sdss.org/  and http://www.skyserver.org/htm/  

[8] Gray, J., Szalay, A.S., Fekete, G., O’Mullane, W., 
Santisteban, M.A.N., Thakar, A., Heber, G., Rots, A.H. 2004. 
There Goes the Neighborhood: Relational Algebra for Spatial 
Data Search. Microsoft Research Technical Report, MSR-TR-
2004-32. 

[9] Fekete, G., Kuo, K.-S. 2015. Indexing Earth with Trixels. 
Poster presentation at the 8th XLDB Conference, May 19-20, 
2015 Stanford University, CA, USA. 

[10] Kunszt, P.Z., Szalay, A.S., Thakar, A.R. 2001. The 
Hierarchical Triangular Mesh. In Mining the Sky: 
Proceedings of the MPA/ESO/MPE Workshop held at 
Garching, Berlin/Heidelberg, 2001, Ch. 83, p631. 

[11] Barrett, P. 1994. Application of the Linear Quadtree to 
Astronomical Databases, Poster at ADASS 1994. 

[12] Fekete, G. 1990. Rendering and managing spherical data with 
sphere quadtrees. Proc. of Visualization ’90. IEEE Computer 
Society, Los Alamitos, CA. pp. 176-186. 

[13] Crichton, D.J., Mattmann, C.A., Cinquini, L., Braverman, A., 
Waliser, D., Gunson, M., Hart, A.F., Goodale, C.E., Lean, P., 
and Kim, J. 2012. Sharing Satellite Observations with the 
Climate-Modeling Community: Software and Architecture. 
IEEE Software, September/October 2012, pp. 73-81. 

[14] Pugh, William. 1990. Skip lists: a probabilistic alternative to 
balanced trees in Communications of the ACM, June 1990, 
33(6) 668-676.  

 
 


